Package: AHGestimation (via r-universe)

December 5, 2024

Title An R package for Computing Robust, Mass Preserving Hydraulic Geometries and Rating Curves

Description Compute mass preserving 'At a station Hydraulic Geometry' (AHG) fits from river measurements.

Version 0.3.1

Maintainer Mike Johnson <mike.johnson@noaa.gov>

BugReports https://github.com/mikejohnson51/AHGestimation/issues

URL https://github.com/mikejohnson51/AHGestimation

Depends R(>=4.2.0)

Imports DescTools, dplyr, geodist, mco, phapply, stats, sf, utils

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Suggests distill, DT, scatterplot3d, ggplot2, ggrepel, kableExtra, knitr, patchwork, rmarkdown, testthat (>=3.0.0), tidyr

Config/testthat/edition 3

VignetteBuilder knitr

Config/pak/sysreqs libgdal-dev gdal-bin libgeos-dev make libssl-dev libproj-dev libsqlite3-dev libudunits2-dev libx11-dev zlib1g-dev

Repository https://mikejohnson51.r-universe.dev

RemoteUrl https://github.com/mikejohnson51/AHGestimation

RemoteRef HEAD

 ${\bf RemoteSha} \ \ {\bf f1783f027477a5eae615abd5fd14f02bc2fc0559}$

ahg_estimate

Contents

	ahg_estimate	2
	best_optimal	3
	calc_nsga	4
	compute_ahg	5
	$compute_channel_slope \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	5
	compute_hydraulic_params	6
	$compute_n \ \dots $	6
	cross_section	7
	date_filter	8
	extract_thalweg	8
	$\operatorname{mad_filter}$	9
	min_max	10
	mismash	10
	$nls_filter $	11
	nrmse	11
	nwis	12
	pbias	13
	qva_filter	13
	significance_check	14
	slope_matrix	14
Index		16

 $ahg_estimate$

 $Properly\ estimate\ AHG\ values$

Description

Properly estimate AHG values

```
ahg_estimate(
   df,
   allowance = 0.05,
   gen = 192,
   pop = 200,
   cprob = 0.4,
   mprob = 0.4,
   times = 1,
   scale = 1.5,
   full_fitting = FALSE,
   verbose = FALSE
)
```

best_optimal 3

Arguments

df hydraulic data.frame with columns named (Q, V, TW, Y). Q and at least

one other are required.

allowance allowed deviation from continuity gen Number of generations to breed.

pop Size of population
cprob Crossover probability
mprob Mutation probability

times how many times (seeds) should nsga2 be run

scale should a scale factor be applied to data pre NSGA-2 fitting

full_fitting should all fits be returned?

verbose should messages be emitted?

Value

list

See Also

```
Other AHG: best_optimal(), calc_nsga(), compute_ahg(), min_max(), mismash()
```

best_optimal

Report best optimal

Description

Report best optimal

Usage

```
best_optimal(best, check, verbose = TRUE)
```

Arguments

best performing method (character string)

check values to check against
verbose should messages be emitted

Value

vector

```
Other AHG: ahg_estimate(), calc_nsga(), compute_ahg(), min_max(), mismash()
```

4 calc_nsga

calc_nsga

Calculate NSGA2 AHG

Description

Calculate NSGA2 AHG

Usage

```
calc_nsga(
   df,
   allowance = 0.05,
   r,
   scale = 2,
   gen = 96,
   pop = 500,
   cprob = 0.8,
   mprob = 0.05,
   times = 1
)
```

Arguments

df hydraulic data.frame

allowance allowable deviation from continuity

r fit list

scale should a scale factor be applied to data pre NSGA-2 fitting

gen Number of generations to breed.

pop Size of population
cprob Crossover probability
mprob Mutation probability

times how many times (seeds) should nsga2 be run

Value

data.frame

```
Other AHG: ahg_estimate(), best_optimal(), compute_ahg(), min_max(), mismash()
```

compute_ahg 5

compute_ahg

 $Approximate\ AHG\ relationships$

Description

Approximate AHG relationships using both OLS and NLS methods

Usage

```
compute_ahg(Q, P, type = "relation")
```

Arguments

Q a stream flow time series

P a corresponding time series of a second hydraulic variable

type relationship being tested

Value

data.frame

See Also

```
Other AHG: ahg_estimate(), best_optimal(), calc_nsga(), min_max(), mismash()
```

```
compute_channel_slope
```

Calculate the slope of 3D linestring

Description

Given a sf object with 'XYZ' coordinates, return a vector of numeric values representing the average slope of each linestring in the sf data frame input.

The default calculates the slope using 'slope_weighted()'. You can also use 'slope_mean()' or any other function that takes the same inputs as these functions.

Usage

```
compute_channel_slope(path, fun = slope_weighted, directed = FALSE)
```

Arguments

path an XYZ LINESTRING representing the path of travel

fun The slope function to calculate per element, 'slope_weighted' is the de-

fault.

directed Should the value be directed? 'FALSE' by default. If 'TRUE' the result

will be negative when it represents a downslope (when the end point is

lower than the start point).

6 compute_n

Value

A vector of slopes associated with each linear element The value is a proportion representing the change in elevation for a given change in horizontal distance.

See Also

```
Other hydraulics: compute_hydraulic_params(), compute_n(), cross_section(), extract_thalweg(), slope_matrix()
```

```
compute_hydraulic_params
```

Approximate channel coefficient

Description

Approximate the hydraulic values from AHG fit

Usage

```
compute_hydraulic_params(fit)
```

Arguments

fit

output of ahg_estimate

Value

numeric

See Also

```
Other hydraulics: compute_channel_slope(), compute_n(), cross_section(), extract_thalweg(), slope_matrix()
```

compute_n

Approximate Roughness

Description

Approximate median roughness using Manning Equation

```
compute_n(df, S = 0.02)
```

cross_section 7

Arguments

df a data.frame with at least Y and V.

S reach scale longitudinal slope (m/m). Default mean of the nhdplusV2

Value

numeric

See Also

```
Other hydraulics: compute_channel_slope(), compute_hydraulic_params(), cross_section(), extract_thalweg(), slope_matrix()
```

cross_section

 $Approximate\ channel\ shape$

Description

Get a list of points from x axis of a cross section and max depth and produce depth values for those points based on channel shape

Usage

```
cross_section(r, TW = 30, Ymax = 2, n = 30)
```

Arguments

r The corresponding Dingman's r coefficient

TW width of the channel at bankfull

Ymax maximum depth of the channel at bankfull

the number of points to construct in the XS

Value

depth values every 1m along the cross section

```
Other hydraulics: compute_channel_slope(), compute_hydraulic_params(), compute_n(), extract_thalweg(), slope_matrix()
```

8 extract_thalweg

date_filter

Implements filtering by date

Description

Data is filtered when it is beyond a specified year threshold (e.g. 5 years old). The relative date is based on the newest observation in the data set. Optionally, the maximum flow (Q) record can be retained.

Usage

```
date_filter(df, years, keep_max = FALSE)
```

Arguments

df a data.frame with at least a date and Q field.

years the number of allowed history

keep_max Should the largest flow record be kept, even if older then "years"

Value

data.frame

See Also

```
Other filters: mad_filter(), nls_filter(), qva_filter(), significance_check()
```

extract_thalweg

Extract Thalweg From a data frame of cross sections, a classified thalweg can be extracted as the connected LINESTRING

Description

Extract Thalweg From a data.frame of cross sections, a classified thalweg can be extracted as the connected LINESTRING

Usage

```
extract_thalweg(xs, crs = 5070)
```

Arguments

xs a data.frame containing cross sectional data. Required columns are hf_id,

 cs_id, X, Y, Z

crs the CRS of the XY coordinates

mad_filter 9

Value

XYZ LINESTRING object

See Also

```
Other hydraulics: compute_channel_slope(), compute_hydraulic_params(), compute_n(), cross_section(), slope_matrix()
```

mad_filter

Implements filtering by median absolute deviation

Description

An iterative outlier detection procedure is run based on to the linear regression residuals. Values of log-transformed TW, V, and Y residuals falling outside a specified median absolute deviation (MAD) envelope are excluded. Regression coefficients were recalculated and the outlier detection procedure was reapplied until no outliers are detected. This method was identified in ${\rm HyG}$

Usage

```
mad_filter(df, envelope = 3)
```

Arguments

df a data.frame with at least a Q and one other AHG field (Y. TW, V).

envelope MAD envelope

Value

data.frame

```
Other filters: date_filter(), nls_filter(), qva_filter(), significance_check()
```

10 mismash

min_max

Find thresholds for coefficient and exponent limits.

Description

Find thresholds for coefficient and exponent limits.

Usage

```
min_max(df, scale = 2)
```

Arguments

df

hydraulic data.frame

scale

Scale by set factor. This limits the exponent at coefficients to the range

of (1/s) * nls; s * nls

Value

list

See Also

```
Other AHG: ahg_estimate(), best_optimal(), calc_nsga(), compute_ahg(), mismash()
```

mismash

Compute all combos!

Description

Compute all combos!

Usage

```
mismash(v, V, TW, Y, Q, r, allowance)
```

Arguments

alues
7

V Velocity time series
 TW Top width time series
 Y Depth time series
 Q Discharge time series

r rrr TODO

allowance Allowable deviation from continuity

nls_filter 11

Value

list

See Also

Other AHG: ahg_estimate(), best_optimal(), calc_nsga(), compute_ahg(), min_max()

nls filter

Implements NLS filtering

Description

An NLS fit provides the best relation by relation fit. For each provided relationship, an NLS fit is computed and used to estimate the predicted V,TW,Y for a given Q. If the actual value is outside the specified allowance it is removed.

Usage

```
nls_filter(df, allowance = 0.5)
```

Arguments

a data.frame with at least a Q and one other AHG field (Y. TW, V).

allowance how much deviation from observed should be allowed (default = .5)

Value

data.frame

See Also

```
Other filters: date_filter(), mad_filter(), qva_filter(), significance_check()
```

nrmse

Normalized Root Mean Square Error

Description

Normalized root mean square error (NRMSE) between sim and obs, with treatment of missing values

```
nrmse(sim, obs)
```

12 nwis

Arguments

sim numeric vector simulated values
obs numeric vector observed values

Value

numeric

See Also

Other evaluation: pbias()

nwis Sample gage data Manual measurements made at NWIS site $01096500~Q_cms$ is a mandatory argument and at least one

of TW_m , V_m s, or Y_m .

Description

Sample gage data Manual measurements made at NWIS site 01096500 Q_cms is a mandatory argument and at least one of TW m, V ms, or Y m.

Usage

nwis

Format

A data frame with 245 rows and 6 columns:

siteID NWIS ID

date date of measurement

Q_cms Steamflow (cubic meters per second)

Y_m Depth (meters)

V_ms Velocity (meters per second)

 $\mathbf{TW}_{\mathbf{m}}$ Top width (meters)

pbias 13

pbias

Percent Bias

Description

Percent Bias between sim and obs, with treatment of missing values.

Usage

```
pbias(sim, obs)
```

Arguments

sim numeric vector simulated values
obs numeric vector observed values

Value

numeric

See Also

Other evaluation: nrmse()

qva_filter

Implements filtering by continuity

Description

The function tests if the measured Q is outside of the expected range based on the product of measured velocity, top-width, and depth (e.g. Q vA)

Usage

```
qva_filter(df, allowance = 0.05)
```

Arguments

df a data.frame with a Q, Y, TW, V and field.

allowance how much deviation from equality should be allowed (default = .05)

Value

data.frame

```
Other filters: date_filter(), mad_filter(), nls_filter(), significance_check()
```

slope_matrix

Description

The relationship between all supplied log transformed variables are computed. If the p-value of any of these is less then the supplied p-value an error message is emitted.

Usage

```
significance_check(df, pvalue = 0.05)
```

Arguments

df a data.frame with at least a Q and one other AHG field (Y. TW, V).

pvalue Significant p-value (default = .05)

Value

data.frame

See Also

```
Other filters: date_filter(), mad_filter(), nls_filter(), qva_filter()
```

 ${\it slope_matrix} \qquad \qquad {\it Calculate \ the \ gradient \ of \ line \ segments \ from \ a \ 3D \ matrix \ of } \\ coordinates$

Description

Calculate the gradient of line segments from a 3D matrix of coordinates

```
slope_matrix(mat, lonlat = TRUE)
slope_weighted(mat, lonlat = TRUE, directed = FALSE)
slope_mean(mat, lonlat = TRUE, directed = FALSE)
```

slope_matrix 15

Arguments

mat Matrix containing coordinates and elevations. The matrix should have

three columns: $X,\,Y,\,$ and $Z.\,$ In data with geographic coordinates, Z values are assumed to be in meters. In data with projected coordinates, Z values

are assumed to have the same units as the X and Y coordinates.

value is from the CRS of the routes ('sf::st_is_longlat(...)').

Value

A vector of slopes associated with each LINE element The output value is a proportion representing the change in elevation for a given change in horizontal distance.

```
Other hydraulics: compute_channel_slope(), compute_hydraulic_params(), compute_n(), cross_section(), extract_thalweg()
```

Index

```
* AHG
                                                 extract_thalweg, 6, 7, 8, 15
    ahg_estimate, 2
                                                 mad_filter, 8, 9, 11, 13, 14
    best_optimal, 3
                                                 min_max, 3-5, 10, 11
    calc_nsga, 4
                                                 mismash, 3-5, 10, 10
    compute_ahg, 5
    min_max, 10
                                                 nls_filter, 8, 9, 11, 13, 14
    mismash, 10
                                                 nrmse, 11, 13
* datasets
                                                 nwis, 12
    nwis, 12
* data
                                                 pbias, 12, 13
    nwis, 12
* evaluation
                                                 qva_filter, 8, 9, 11, 13, 14
    nrmse, 11
    pbias, 13
                                                 significance_check, 8, 9, 11, 13, 14
* filters
                                                 slope_matrix, 6, 7, 9, 14
    date_filter, 8
                                                 slope_mean (slope_matrix), 14
    mad_filter, 9
                                                 slope_weighted (slope_matrix), 14
    nls_filter, 11
    qva_filter, 13
    significance_check, 14
* hydraulics
    compute_channel_slope, 5
    compute_hydraulic_params, 6
    compute_n, 6
    cross_section, 7
    extract_thalweg, 8
    slope_matrix, 14
ahg_estimate, 2, 3-5, 10, 11
best_optimal, 3, 3, 4, 5, 10, 11
calc_nsga, 3, 4, 5, 10, 11
compute_ahg, 3, 4, 5, 10, 11
compute_channel_slope, 5, 6, 7, 9, 15
compute_hydraulic_params, 6, 6, 7, 9, 15
compute_n, 6, 6, 7, 9, 15
\verb|cross_section|, 6, 7, 7, 9, 15|
date_filter, 8, 9, 11, 13, 14
```